On polynomial functions (mod m)

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Weak mod m Representation of Boolean Functions

Let P be a polynomial over the ring of mod m integers. P weakly Abstract-1 represents Boolean function f : {0, 1}n → {0, 1} if there is a subset S ⊆ {0, 1, . . . , m − 1} such that f(x) = 0 if and only if P (x) ∈ S. The smallest degree of polynomials P weakly representing f is called the weak mod m degree of f . We give here an Ω(logn) lower bound for the weak degree of the generalized inner pr...

متن کامل

On the M-polynomial of planar chemical graphs

Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...

متن کامل

Bounds on Exponential Sums and the Polynomial Waring Problem Mod

Estimates are given for the exponential sum ∑p x=1 exp(2πif(x)/p), p a prime and f a nonzero integer polynomial, of interest in cases where the Weil bound is worse than trivial. The results extend those of Konyagin for monomials to a general polynomial. Such bounds readily yield estimates for the corresponding polynomial Waring problem mod p, namely the smallest γ such that f(x1)+ . . .+f(xγ) ≡...

متن کامل

The Fibonacci Sequence Mod m

We know that ( ) mod n F p forms a periodic sequence (vide Theorem 4). Let ( ) h p denote the length of the sequence. Let p be a prime such that: { } ( ) 2,3 mod 5 p ≡ a sufficient and necessary condition to ensure that ( ) 2 2 h p p + . We shall denote this group 1 G F . Let { } 1, 2 , , k D d d d = be the non-empty set of k divisors of 2 2 p + . Then for ( ) [ ] 1 min G i F h p d = such that ...

متن کامل

M-polynomial and degree-based topological indices

Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1974

ISSN: 0022-314X

DOI: 10.1016/0022-314x(74)90031-6